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Abstract:Accurate estimates of reference evapotranspiration (ET0) are critical for estimating actual crop evapotranspiration and agricultural
water use. This study uses observations from the Nevada Integrated Climate and Evapotranspiration Network (NICE Net) to validate forecasts
of ET0 and its driving variables from the National Weather Service’s National Digital Forecast Database (NDFD). Daily NDFD ET0 at
lead times of 1 to 6 days were compared against 18 NICE Net stations. Correlations between NDFD and observations generally ranged
between 0.4 and 0.9, with lower correlations at longer leads and a notable drop in skill during July and August. Systematic arid biases (high
bias for temperatures and low bias for humidity) were found in NDFD with a strong warm minimum temperature bias and low vapor pressure
bias most prominent during the growing season. Some of the largest relative biases were found in wind speed, although they were systematic
and varied greatly by location. A case study revealed that NDFD consistently underestimates the variability found in observed minimum
temperature, solar radiation, wind speed, and ET0. Cloudy days during summer were not well represented in the NDFD estimated solar
radiation, which had a cascading impact on temperature, vapor pressure, and ET0 estimates. A monthly ratio-based bias-correction was
applied to NDFD ET0, which reduced the root-mean squared error by 5%–30% for most locations. Bias-corrected ET0 forecasts from NDFD
or other forecast systems show potential as a guide to develop weekly irrigation schedules for agricultural producers, with the ultimate goal of
reducing applications of excess irrigation water. DOI: 10.1061/(ASCE)WR.1943-5452.0001595. This work is made available under the
terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

The 2017 Census of Agriculture stated that the total area of irri-
gated land in the US is approximately 23 million ha (58 million
acres) (NASS 2019); the associated water rights are worth over
$200 billion (Allen et al. 2015). Accurate operational estimates

of agricultural evapotranspiration (ET) are therefore a national
necessity. Further, the western US faces increasing pressure to
conserve water and reduce consumptive water use in the face of
prolonged drought and a changing climate (Blumler 2018).
Because irrigated agriculture consumes most permitted water rights
in the western US (Dieter et al. 2018), the biggest opportunity to
save water is through reducing consumptive uses of irrigation, par-
ticularly through the use of new technologies such as in situ field
monitoring, high-resolution weather forecasts, and precision irriga-
tion systems (Allmaras et al. 2018).

Accurately measuring ET to estimate consumptive use can be
difficult and expensive, so most agricultural regions lack actual
ET measurements. To overcome this limitation, reference evapo-
transpiration (ET0) is commonly used to estimate actual ET in
support of irrigation scheduling (Hobbins and Huntington 2016).
A form of evaporative demand, ET0 is parameterized to represent
the ET from a well-watered reference crop (Allen et al. 2005), and it
is generated from local weather data observations of temperature,
humidity, wind speed, and solar radiation. The generated values are
then used as an evaporative index to permit decision makers such
as engineers, hydrologists, and water managers to predict ET for
agricultural areas that are well-watered (Allen et al. 2005). For agri-
cultural applications, accurate forecasts of ET can help support and
complement conservation efforts by identifying optimal times and
days for irrigation, optimizing application amounts, and providing
for data-informed deficit irrigation.

Global weather forecast models provide the variables needed to
compute ET0, but at too coarse a spatial resolution for agricultural
applications, necessitating downscaling (e.g., Tian and Martinez
2014). Gridded high-resolution (5 km) forecasts of meteorological
variables from the National Weather Service (NWS 2018) were first
produced in 2003 with the development of the National Digital
Forecast Database (NDFD) (Glahn and Ruth 2003); the forecast
reference evapotranspiration (FRET) was added as an operational
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output variable in 2016. However, thus far, studies validating FRET
have been limited to California (Krone-Davis et al. 2012; Hamouda
et al. 2022) and New Mexico (Engle et al. 2019) and have focused
on annual or seasonal comparison with observations, and these
studies have yet to assess the individual drivers used to com-
pute FRET.

Weather forecasts in general do not assimilate agricultural land
information into their modeling systems. Irrigation increases ET
and affects land surface-atmospheric feedbacks (Ozdogan and
Rodell 2010). Even in highly advective arid environments, land
surface-atmospheric feedbacks and near-surface boundary layer
conditioning within irrigated areas has been well-documented
(Allen et al. 1983; Temesgen et al. 1999; Szilagyi and Schepers
2014; Huntington et al. 2015, 2018). The near-surface (i.e., 2-m)
air temperature is lower, humidity is higher, and wind speeds are
lower in irrigated areas than in surrounding arid landscapes. These
differences are typical when comparing reanalysis data with agri-
cultural weather station–derived variables and ET0 (Lewis et al.
2014; Blankenau 2017).

They also follow well-known complementary theory, where an
increase in actual ET results in a decrease in evaporative demand
(i.e., ET0) (Brutsaert and Parlange 1998; Hobbins et al. 2004;
Hobbins and Huntington 2016). Abatzoglou (2011) also noted a
positive bias in ET0 derived from a reanalysis hybrid of the North
American Land Data Assimilation System (NLDAS) (Mitchell
et al. 2004) and the Parameter Regression on Independent Slopes
Model (PRISM) (Daly et al. 2002) when compared with ET0 com-
puted from data collected from US Bureau of Reclamation’s Agri-
MET stations in the US Pacific Northwest. Despite this common
knowledge within the ET community, researchers and practitioners
routinely and erroneously apply reference ET equations to estimate
well-watered reference and potential crop ET using ambient
weather data representative of water-limited arid conditions, rather
than using weather data representative of local agricultural condi-
tions. This practice can lead to excess irrigation and wasted water
supply.

A bias-corrected FRET product has the potential to reduce
avoidable nonbeneficial consumptive uses by informing irrigators
when to vary the application rate of conventional high-pressure or
newer low-energy precision application (LEPA) center-pivot irriga-
tion systems, when to turn the irrigation systems off completely on
days when ET0 is forecast to be low or to continue application on
days where ET0 is forecast to be high (M. P. Plaskett, personal
communication, 2019). Current practice in Nevada is to run con-
ventional irrigation systems at constant speeds and pumping rates
throughout the day. Therefore, integrating the 7-day FRET into ir-
rigation management and operations and implementing LEPA sys-
tems has the greatest potential to reduce application rates and
nonbeneficial consumptive uses beyond typical reported values
of 20% to 30% (Lyle and Bordovsky 1983; Fipps and New
1990; Rajan et al. 2015).

In this study, we examine the forecast skill of FRET and NDFD
compared against agricultural weather station observations in
Nevada. We build upon existing studies that have assessed FRET
by (1) using the individual NDFD ET0 drivers to determine which
variables are contributing most to forecast errors, (2) performing
comparisons monthly (as opposed to seasonal or annual), and
(3) providing a method to apply a bias-correction to ET0 forecasts.
First, the collection of ET0 observations and data QC is described,
followed by a description of NDFD and FRET. Then, we describe
the results of the skill analysis over Nevada and provide a station-
based case study. Finally, we show a comparison of the forecast
errors before and after bias correction.

Data and Methods

Reference Evapotranspiration Observations and
Quality Control

Daily weather observations were gathered from the Nevada
Integrated Climate and Evapotranspiration Network (NICE Net,
Desert Research Institute, n.d.-a) run by the Desert Research
Institute (Fig. 1). The network consists of 18 agricultural weather
stations located throughout Nevada and one station located in
eastern California [Fig. 1(a)]. NICE Net stations were installed
beginning in 2010 to collect weather data representative of agri-
cultural areas in Nevada and enable a more accurate estimation
of agricultural water use across the state. Stations are typically
located on the edges of irrigated fields [Figs. 1(b and c)] to capture
the modified near-surface boundary layer weather conditions
associated with irrigated lands in arid regions. NICE Net stat-
ions collect measurements of solar radiation, air temperature at
2 m, relative humidity at 2 m, wind speed at 3 m, and preci-
pitation, barometric pressure, and soil temperature and soil mois-
ture at multiple depths. Daily records were downloaded for the
period of record at each station. Station metadata can be found
in Table 1.

Weather station data were subject to quality assurance and
quality control (QAQC) following QAQC recommendations and
guidelines of Allen (1996), Allen et al. (2011), and ASCE (Allen
et al. 2005), which are specific to agricultural weather data.
Weather data were visualized and QAQCed using open-source
Python software developed by DRI (pyWeatherQAQC, Desert
Research Institute, n.d.-b).

Corrections for omissions of agricultural weather data are com-
mon and necessary prior to computing ET0 (Allen 1996; Allen
et al. 2005, 2011). As a specific example, the pyranometer record-
ing solar radiation data may experience frequent accumulations of
debris on the lens, or it may experience voltage spikes, sensor drift,
or local environmental obstructions (Allen 2008). The ASCE equa-
tion requires wind speeds for a 2-m height, so wind speeds mea-
sured at a 3-m height were logarithmically transformed following
guidelines of Allen et al. (2005). Details of QAQC procedures and
recommendations for best results are found within the code docu-
mentation (Desert Research Institute, n.d.-b).

After completion of weather data QAQC, meteorological vari-
ables were used to compute ET0 using the ASCE standardized
Penman-Monteith (ASCE-PM) reference ET equation (Allen et al.
2005) for a short-grass reference crop using open-source Python
software developed by DRI called the ASCE Standardized Refer-
ence Evapotranspiration Script version 0.3.10 (Desert Research
Institute, n.d.-b), and is defined as follows:

ET0 ¼
0.480ΔðRn − GÞ þ γ Cn

Tþ273
u2ðes − eaÞ

Δþ γð1þ Cdu2Þ
ð1Þ

where T = daily mean temperature at 2-m height (°C); u2 = daily
mean wind speed at 2-m height (m s−1); Rn = daily average
net radiation (MJm−2 day−1); G = soil heat flux density
(MJm−2 day−1); es = daily mean saturation vapor pressure at 2-m
height (kPa); ea = daily mean actual vapor pressure at 2-m height
(kPa); Δ = slope of the saturation vapor pressure-temperature
curve (kPa °C−1); γ = psychrometric constant (kPa °C−1); Cn ¼
900 Kmms3 Mg−1 day−1 for a short-grass reference; and Cd ¼
0.34ms−1 for a short-grass reference.
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Reference ET from the National Digital Forecast
Database

In 2003, the NWS began producing the NDFD (Glahn and Ruth
2003) to supplement the text-only forecasts previously available.
NDFD provides continuous spatial grids across Contiguous United
States (CONUS) that are mosaicked together from individual NWS
Weather Forecast Offices at high resolution (5 km) with forecasts
updated hourly and issued for lead times of 1–7 days. For appli-
cations such as forecasting ET0 for agricultural water-use esti-
mates, the high spatial resolution of the NDFD is beneficial and
eliminates the need to downscale. In 2016, the NWS began produc-
ing an operational FRET) (Hobbins 2010), computed from NDFD
elements and based on ET0. The main issue with conducting a skill
analysis of FRET is its short period of record (shorter than 5 years)
and consequent small sample size. Most NICE Net stations have
8–10 years of data to compare against. Another limitation of using
just FRET for a skill analysis is that biases and forecast errors
cannot be attributed to the individual drivers of ET0. We therefore
decided to compute ET0 offline based on NDFD elements to provide

Fig. 1. (Color) (a) Location of NICE Net stations throughout Nevada and one station in eastern California; (b) Clover Valley (NSNA); and (c) Snake
Valley (NCVL). Full names for the four-letter station abbreviations can be found in Table 1. Photographs from (b) Clover Valley (NCLV); and
(c) Snake Valley (NSNA) were taken by Greg McCurdy (Western Regional Climate Center) and used with permission. The map was created using
ArcGIS® software by Esri. ArcGIS and ArcMap are the intellectual property of Esri and are used herein under license. Copyright © Esri. All rights
reserved.

Table 1. NICE Net station metadata

Station name Station ID
Elevation

(m)
Station
start date

Moapa Valley NMOA 399 February 2010
Mason WMA NMAS 1,319 April 2010
Truckee Meadows NSPA 1,338 May 2010
Pahranagat NWR NPWL 983 July 2010
Carson Valley NCVA 1,426 August 2010
Smith Valley NSMV 1,489 August 2010
Snake Valley NSNA 1,579 August 2010
Rogers Spring NROG 689 September 2010
Paradise Valley NPVA 1,341 November 2010
Sand Spring Valley NSSV 1,466 December 2010
Steptoe Valley North NSTV 1,785 March 2011
Steptoe Valley WMA NSWM 1,966 March 2011
Antelope Valley NANV 1,485 June 2011
North Spring Valley NSPA 1,338 June 2011
Clover Valley NCLV 1,721 September 2011
Bridgeport Valley CBVA 1,980 July 2012
Hualapai Flat NHUA 1,236 October 2012
Reese River Valley NREE 1,847 May 2014
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a more robust skill analysis and development of bias-correction
factors, and to examine the skill and biases of the NDFD drivers
of ET0. A comparison of FRETwith the ET0 computed in this study
from NDFD variables is presented in Fig. 2 and shows strong rela-
tionships between the two. For the main study results, we show ET0

computed offline using NDFD elements and show the FRET results
in Appendix I.

From the NDFD archive (Desert Research Institute, n.d.-b),
we used daily maximum temperature (Tmax), daily minimum
temperature (Tmin), wind speed at 10 m, percent sky cover, and
vapor pressure extracted from the grid point nearest to each
observing station. Forecast lead times of 1–6 days were evaluated.
Calculations of ET0 were done in the same way as for observa-
tions, with the following exception: NDFD does not provide in-
coming shortwave radiation (Rin), so we had to estimate it from
sky cover first. We followed the methods of Hobbins (2010) to
estimate Rin to replicate the methods used in FRET calculations
as follows:

Rin ¼ Rtoa

�
1 − asa

CCdaily

100

�
ð2Þ

where Rtoa = extraterrestrial shortwave radiation estimated based
on Walter et al. (2000); asa =calibrated constant (0.71); and
CCdaily = mean cloud cover (%) during daylight hours estimated
from Brutsaert (2013).

Skill Analysis

Forecasts of NDFD ET0 and the drivers were compared against
observations to assess skill of the forecasts. Skill was assessed
at leads 1–6 days and for each month of the year. Samples for

skill analysis were grouped by using all days in each month
for the period of record, which provided sample sizes of about
150–250 data points per month at each location. The following
three statistical measures were used to gauge the skill of NDFD
forecasts: the correlation coefficient (R) based on the Pearson
correlation; root-mean square error (RMSE); and bias. Bias
was computed as the difference (NDFD − Observations) for
Tmax and Tmin and as the ratio (NDFD/Observations) for all
other variables.

Bias Correction of NDFD ET 0 to Observed ET 0

We show how a bias-correction approach can be applied to
NDFD ET0 forecasts. We did not bias-correct the individual
drivers used to compute ET0; just the resultant ET0 values
were bias-corrected. Bias ratios computed for each month
and lead time were applied to NDFD ET0 forecasts at the daily
time step. This method has been previously applied to bias-
correct historical gridded weather data and gridded climate
projections (Huntington et al. 2016, 2018). Forecasts and obser-
vations were pooled by month using the full period of record at
each station point, and a mean ET0ðET0Þ was computed for

Fig. 2. (Color) Comparison of FRET and ET0 computed from NDFD
drivers. Data are from all points at all NICE Net stations using the com-
plete period of record common to both FRET and NDFD for each loca-
tion. Lead 1-day forecasts are shown. Shading indicates point density,
with brighter colors (yellows) showing higher density and darker colors
(blues) showing lower density.

(a) (b) (c)

(d) (e) (f)

Fig. 3. (Color) Correlation coefficient R between NDFD and NICE
Net ET0 in (a) May; (b) June; (c) July; (d) August; (e) September;
and (f) October. Vertical axes show the station abbreviations, and
horizontal axis shows lead time in days.
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each. The bias ratio (BR) for each month was then computed as
follows:

BR ¼ ðET0ÞNDFD
ðET0ÞObserved

ð3Þ

For example, at Carson Valley (NCVA in Table 1) in June, there
were at total of 235 observations (2010–2020); for each NDFD lead
time, the ðET0Þ was computed over those 235 data points and
divided by the station ðET0Þ for June. The bias-corrected data
(ET0BC) for June would be obtained by dividing the NDFD daily
forecasts (ET0NDFD) by the monthly BR

ET0BC ¼ ET0NDFD

BR
ð4Þ

The RMSE for the original forecasts were then compared with
the RMSE of the bias-corrected forecasts to examine improvements
in the forecasted ET0 quantities.

Results

Growing Season Forecast Skill

The correlation between NDFD and observed ET0 for each month
(May–October) and lead time (1–6 days) is shown in Fig. 3. As
expected, we found a general pattern of correlation decreasing at
longer lead times. Forecasts in the month of May were the most
skillful of all growing season months with R values of 0.7–0.9 dur-
ing the first 4 days and a notable drop in skill for Days 5 and 6. The
summer months, particularly July and August, showed a large drop
in forecast skill at all lead times with R values rarely exceeding 0.7
and often in the 0.4–0.6 range even at a lead of 1 day. In September
and October, skill improved again. The lower skill during July and
August is concerning for agricultural applications given that clima-
tologically, ET0 reaches a peak during these months and irrigation
rates are highest. Results showing FRET compared with observa-
tions can be found in Appendix I.

To examine possible sources of the lower correlations during
summer, we used July as an example and plotted the correlations
for ET0 along with all the drivers in Fig. 4. Overall, Tmax,
solar radiation, and vapor pressure consistently had the strongest

(a) (b) (c)

(d) (e) (f)

Fig. 4. (Color) Correlation coefficient R between NDFD and NICE
Net (a) ET0; (b) Tmax; (c) Tmin; (d) vapor pressure; (e) wind speed;
and (f) solar radiation in July. Vertical axes show the station abbrevia-
tions, and horizontal axis shows lead time in days. Panel (a) is repeated
from Fig. 3(c).

(a) (b) (c)

(d) (e) (f)

Fig. 5. (Color) RMSE between NDFD and NICE Net ET0 in (a) May;
(b) June; (c) July; (d) August; (e) September; and (f) October. Vertical
axes show the station abbreviations, and horizontal axis shows lead
time in days.
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correlations, whereas Tmin and wind speed had the lowest correla-
tions. This result shows that Tmin and wind speed were likely the
main contributors to the degraded ET0 correlations.

Fig. 5 shows the NDFD ET0 RMSE for each month (May–
October) and lead time (1–6 days). RMSE generally increased
with lead time, although for some stations, RMSE remained
steady over all leads or even decreased. Like the correlation analy-
sis, the RMSE was overall greatest during the summer months.
For summer, when absolute values of ET0 were the highest,
RMSE ranged from 0.65 to 1.96 mm=day. At some stations, high
RMSE was found during all months and lead times, including
Moapa Valley (NMOA), Reese River Valley (NREE), and Rogers
Spring (NROG). Results showing FRET RMSE can be found in
Appendix I.

Maximum and minimum temperature biases for each month (and
growing season mean) at a lead of 1 day are shown in Figs. 6(a
and b). Because monthly bias patterns were similar at all lead times
and indicate systematic bias in NDFD, we chose to focus on 1-day
leads, which are likely the most applicable for agricultural applica-
tions. We found a distinct seasonal pattern in bias for both Tmax

and Tmin. For Tmin, biases ranged from −0.53°C to þ4.62°C, but

were mostly positive (warm) with consistently larger values found
during the growing season; for Tmax, biases ranged from−1.90°C to
þ1.83°C, with negative (cool) biases often found in October–April
and positive (warm) biases during May–September. Warm Tmin
biases during the growing season are due to NDFD not accounting
for the well-watered and vegetated land-surface conditions at station
locations, which leads to lower overnight temperatures than the
surrounding arid landscapes of Nevada. Similarly, daytime high
temperatures (Tmax) tend to be higher in arid landscapes than in
irrigated areas. Scale mismatches between station and 5-km grid
values will also inherently lead to gridded data biases that do not
capture microclimates.

Bias ratios for vapor pressure, wind speed, solar radiation, and
ET0 for each month (and growing season mean) at a 1-day lead are
shown in Figs. 6(c–f). Starting with vapor pressure [Fig. 6(c)], we
found consistently low NDFD bias during the growing season.
Some larger vapor pressure bias ratios were found to be less than
0.75 (25%); however, smaller biases of 0.9–1.0 (<10%) were more
common. The low growing-season biases in NDFD reflect the
general arid bias with lower humidity relative to observations.
Wind speed biases [Fig. 6(d)] were variable, but NDFD wind speed

(a) (b) (c)

(d) (e) (f)

Fig. 6. (Color) NDFD biases for the lead 1-day forecasts for (a) minimum temperature; (b) maximum temperature; (c) vapor pressure; (d) wind speed;
(e) solar radiation; and (f) ET0. Horizontal axes show the calendar months (January–December) from left to right, with the growing season (GS)
(May–October) average on the far right. Vertical axes show the station abbreviations.
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(a)

(c)

(b)

(d)

(e)

(f)

Fig. 7. (Color) Daily time series for July 2018 at NSMV (Obs) and nearest NDFD grid point for (a) ET0; (b) vapor pressure; (c) Tmax; (d) Tmin;
(e) wind speed; and (f) solar radiation. NDFD forecasts shown are for a 1-day lead time.
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was higher than observations for the most part. At several locations,
we found wind speed bias ratios to consistently exceed 1.25 during
all months. At other locations, wind speed biases were far more
reasonable, remaining within �10% of observations.

Solar radiation [Fig. 6(e)] had the most consistent magnitude of
biases when considering variations across all stations; biases were
generally low, with a notably larger bias during the spring months.
ET0 biases [Fig. 6(f)] (FRET results are given in Appendix I) were
also quite variable but often fell within �10% of observations
during the growing season. Next, we present a case study for an

individual station to help understand how each driver contributes
to NDFD ET0 biases and errors.

Smith Valley, Nevada, Case Study

The Smith Valley NICE Net station (NSMV) is used next as a case
study to examine contributions of forecast skill from individual
drivers. A daily time series from July 2018 at NSMV is shown
in Fig. 7 with the lead 1-day NDFD forecast overlaid. At the
monthly scale, we found good agreement between the ET0 totals
from observations (202 mm) and NDFD (207 mm). Although this

(a) (b)

(c) (d)

(e) (f)

Fig. 8. (Color) Monthly (daily values averaged to the month) COV at the Smith Valley NICE Net (NSMV) (marked Obs) and nearest NDFD
grid point for (a) ET0; (b) vapor pressure; (c) Tmax; (d) Tmin; (e) wind speed; and (f) solar radiation. NDFD forecasts shown are for a 1-day
lead time.
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is encouraging, it is the daily variations that will be most important
to producers for irrigation scheduling. In general, observed ET0

variability seemed to be captured well, with an exception being July
20–22. A light precipitation event occurred on July 20 with 3.3 mm
of rainfall observed. During this period, the observed ET0 declined
to a minimum of 4.0 mm=day on July 20, whereas NDFD always
exceeded 5.4 mm=day and showed no pronounced drop off. NDFD
Tmax declined but not as sharply as observed, whereas NDFD Tmin
showed a steady high bias.

Observed Tmin variations earlier in the month were not well
captured by NDFD. There was a large dip in observed solar
radiation on July 20 (121 W=m2) due to clouds that NDFD did
not capture (a similar situation occurred earlier in the month),
which coincides with the ET0 minimum. Even if the sensitivity
of ET0 to solar radiation is low, cloudy days not being well re-
solved in NDFD will impact other variables such as Tmax, Tmin,
and vapor pressure, ultimately contributing to a less accurate fore-
cast for that day.

The coefficient of variation (COV) was computed by month
(daily values averaged to the month) for ET0 and each driver and
is shown in Fig. 8 for NSMV. We found that NDFD was able to
capture the seasonal pattern of lowest ET0 variability in the
summer months and highest during the winter, with NDFD con-
sistently having less variability than observations throughout the
entire year [Fig. 8(a)]. Of the five drivers of ET0, the closest match
was for Tmax, with a difference within �0%. NDFD Tmin also fol-
lowed the observed seasonal COV cycle but was consistently
much lower (20%–40%) than observed. Wind speed and solar ra-
diation from NDFD also consistently varied less than observed
values. The underprediction of Tmin, wind speed, and solar radi-
ation COV is one factor in the reduction of forecast skill from
NDFD. Results may vary at other sites (for example, at NMOA,
wind speed is actually overpredicted) (Appendix II), but Tmin,
wind speed, and solar radiation consistently drive the reductions
in forecast skill.

Forecast Skill Improvements with Bias Correction

Bias ratios computed for ET0 were applied to the NDFD ET0, and
RMSE was recalculated using the bias-corrected results. Fig. 9
shows the change (%) in RMSE after the bias correction was ap-
plied (results using FRET are given in Appendix I). Decreases in
RMSE were found at most locations with 5%–30% reductions in
error common. Reese River Valley, Nevada (NREE), consistently
had reductions in RMSE of>30% at all lead times for June–August
with a 48%–50% reduction at leads of 1–3 days in June. Minor
increases in error were found in some locations; these changes were
negligible, with a maximum increase in RMSE of 0.73%.

Results presented in Fig. 9 show RMSE for the period of record.
This does not ensure that for a real-time forecast application every
single bias-corrected value will improve. Some forecasts will im-
prove, and others will get worse, but on average there should be
improvements. Also, real-time forecasted values will be indepen-
dent of the values used to compute the historical bias ratios shown
here, which could slightly reduce the skill shown in this paper.
These results suggest that, overall, a real-time application of a
monthly bias-correction ratio to NDFD ET0 forecasts could im-
prove estimates of ET0 quantities needed for accurate irrigation
scheduling and water conservation.

Discussion

There are several caveats and limitations to the approach described
here before it could be used in an operational agricultural

application. First, we obtained observed weather data from agricul-
tural weather stations that are representative of well-watered con-
ditions found throughout irrigated western US farms. However,
most farms do not have reliable weather stations to use for bias
correction of forecasts. Although a potential solution is to use
the bias-correction ratios based on the nearest weather station,
many farms will still be tens or hundreds of kilometers away from
these stations. A second option could be to use historical ET0 es-
timates from high-resolution gridded climate data (e.g., Abatzoglou
2011) that are bias-corrected to nearby agricultural weather stations
to create farm-specific or even field-specific bias ratios.

A limitation of NDFD and FRET is that forecasts are determin-
istic and provide no level of uncertainty or confidence. Although
some users may prefer to see a single forecast value, there is strong
support showing ensemble forecasts are more skillful than deter-
ministic forecasts, especially at longer lead times (e.g., Zhu 2005;
Gneiting and Raftery 2005; Boucher et al. 2011). Ensemble fore-
cast systems are costly to run and time-consuming compared with
a single deterministic run, which is one reason they are rarely run
at high resolution over large domains. In the case of NDFD, its
high spatial resolution and short lead times (1–5 days, where

(a) (b) (c)

(d) (e) (f)

Fig. 9. (Color) Percent change in NDFD ET0 RMSE at all lead
times for (a) May; (b) June; (c) July; (d) August; (e) September;
and (f) October. Percent change is calculated as [ðbias corrected−
uncorrectedÞ=uncorrected × 100]. Station names are shown on the
vertical axis and lead time in days on the horizontal axis.
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deterministic forecasts are comparable to ensemble means) used for
irrigation scheduling might be sufficient. Future studies should
compare ensemble and deterministic ET0 forecasts for agricultural
applications.

Intuitively, improving irrigation efficiency by using ET0 fore-
casts would also lead to less water loss in the form of ET. Paradoxi-
cally, improving irrigation efficiencies often causes an increase in
ET, even though the amount of applied water decreases (Grafton
et al. 2018; Ward and Pulido-Velazquez 2008). Understanding
this irrigation-efficiency paradox requires a detailed look at the
relationships among crop ET, irrigation uniformity, avoidable
and unavoidable consumptive uses, and beneficial and nonbenefi-
cial consumptive uses. Burt et al. (1997) examined these relation-
ships and identified avoidable nonbeneficial consumptive uses,
including bare-soil evaporation, sprinkler wind drift, and canopy-
interception losses. These losses could be reduced with conversion
to LEPA techniques (Lyle and Bordovsky 1981; Bordovsky 2019).
However, converting to LEPA requires significant investment
($5,000–$20,000 per center pivot), and although the Nevada
Department of Agriculture recently began a drought and water
conservation grant program per recommendations by the Nevada

Drought Forum (Drozdoff et al. 2015), conversion has been slow
across the state, and it may take decades before it is the primary
irrigation method from groundwater.

From the perspective of agricultural producers, ET0 forecasts
can be used for irrigation scheduling (e.g., Wang and Cai 2009;
Anupoju et al. 2021; Hamouda et al. 2022). During periods of
high ET0, water limited pivots (typically due to low well yield)
can run nearly 24 h a day, 7 days a week to provide the crop with
sufficient water. Knowledge of the coming week’s ET0 is useful
information to help growers to apply the amount of water necessary
to meet atmospheric demand but at the most efficient times of day.
The grower will have confidence that enough water is provided
for the coming week to satisfy the atmospheric demand while
choosing the best times to irrigate such as at night or when wind
speed is low.

Summary and Conclusions

This study provided an evaluation of ET0 forecasts derived from
NDFD inputs and the FRET product compared with observations

(a) (b) (c)

(d) (e) (f)

Fig. 11. (Color) RMSE between FRET and NICE Net ET0 in (a) May;
(b) June; (c) July; (d) August; (e) September; and (f) October. Vertical
axes show the station abbreviations, and horizontal axis shows lead
time in days. The analysis from Fig. 5 was repeated with FRET instead
of NDFD ET0 to create this figure.

(a) (b) (c)

(d) (e) (f)

Fig. 10. (Color) Correlation coefficient R between FRET and NICE
Net ET0 in (a) May; (b) June; (c) July; (d) August; (e) September; and
(f) October. Vertical axes show the station abbreviations, and horizontal
axis shows lead time in days. The analysis from Fig. 3 was repeated
with FRET instead of NDFD ET0 to create this figure.
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from the NICE Net. We also demonstrated the value of implement-
ing a bias-correction method to improve RMSE. We showed results
from NDFD in the main paper (with FRET given in Appendix I)
because NDFD allowed for a longer period of record as well as
analysis of the individual drivers of ET0, which ultimately control
resultant ET0 quantities.

ET0 forecasts were reasonably well correlated to observations
during most of the growing season, with notable declines in
correlations during July and August, and generally decreasing
correlations with lead time. Systematic biases were found in
Tmax, Tmin, vapor pressure, and solar radiation from NDFD.
An arid bias that arises due to NDFD not accounting for irri-
gated lands and the associated modified near-surface boundary
layer was apparent in NDFD Tmin, which is biased high year-
round (often exceeding þ3°C in summer), and during the
growing season Tmax typically biased high and vapor pressure
biased low.

A case study revealed that observed daily variability in Tmin,
solar radiation, wind speed, and ET0 was underestimated by NDFD
and is likely a key factor in reducing the skill of the forecast ET0

(also supported by the skill analysis of each driver). Solar radiation
on cloudy days showed minimal decreases in NDFD compared
with observations, which has a cascading effect impacting all other
variables and the estimated ET0. Other studies have documented
this observed effect of how clouds have a strong influence on di-
urnal temperature ranges (Dai et al. 1999; Zhou et al. 2009; Tang
and Leng 2013). The poor representation of convective clouds in
NDFD could be a result of the model physics not capturing the
physical processes, the crude estimate of solar radiation from

percent sky cover, a grid scale/point scale mismatch, or a combi-
nation of all of these.

Application of bias-correction ratios to ET0 generally reduced
RMSE daily values by 5%–30%. Testing other bias-correction
methods (e.g., Durai and Bhradwaj 2014) or correcting the ET0

input variables first (e.g., Yang et al. 2021) is recommended in
future studies to determine if other methods may provide better
forecast skill than the ratio method used in this study. It is yet
to be seen whether the level of skill from these bias-corrected fore-
casts is sufficient to aid farmers in irrigation scheduling and water-
conservation efforts. Future efforts will focus on engagement with
producers to better understand data needs, desired forecast skill for
reliable irrigation scheduling, and data-delivery systems (i.e., web
applications).

Appendix I. FRET Compared with Observations

This appendix is intended to show that results obtained using FRET
are comparable to those from ET0 we computed from individual

Fig. 12. (Color) FRET bias ratios for the lead 1-day forecasts.
Horizontal axes show the calendar months (January–December) from
left to right with the growing season (May–October) average on the
far right. Vertical axes show the station abbreviations. Analysis from
Fig. 7(d) was repeated with FRET instead of NDFD ET0 to create
this figure.

(a) (b) (c)

(d) (e) (f)

Fig. 13. (Color) Percent change in FRET RMSE at all lead times for
(a) May; (b) June; (c) July; (d) August; (e) September; and (f) October.
Percent change is calculated as [ðbias corrected − uncorrectedÞ=
uncorrected × 100]. Station names are shown on the vertical axis, and
lead time in days on the horizontal axis. Analysis from Fig. 9 was
repeated with FRET instead of NDFD ET0 to create this figure.
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NDFD drivers (Figs. 10–13). In an operational setting, FRET
will likely be used. The “Data and Methods” section provides
more details on the differences between FRET and our NDFD
ET0 data sets and why NDFD ET0 was used in the main sections
of the study.

Appendix II. Moapa Valley Case Study

Two figures are shown here to complement Figs. 7 and 8. These
figures show Moapa Valley (NMOA),which is one of the sites with
the worst forecast skill. Compared with Figs. 7 and 8, NMOA shows

some similarities and some differences. The main similarities are
that both sites showed NDFD underestimates the Tmin and solar ra-
diation variability. However, NMOA showed NDFD overestimates
the ET0 and wind speed variability (Fig. 14) which is opposite of the
NSMV results. The time series for NMOA (Fig. 15) shows that the
ET0 variations tracked wind speed variations quite closely, which
makes sense because wind is the dominant driver of ET0 variability
in southern Nevada during the growing season (Hobbins 2016).
Fig. 6 showed very large positive wind speed biases at NMOA,
which could be one of the main reasons the overall skill is so poor
for this site.

(a) (b)

(c) (d)

(e) (f)

Fig. 14. (Color) Daily time series for July 2018 at NMOA (Obs) and nearest NDFD grid point for (a) ET0; (b) vapor pressure; (c) Tmax; (d) Tmin;
(e) wind speed; and (f) solar radiation. NDFD forecasts shown are for a 1-day lead time.
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(a)

(c)

(b)

(d)

(e)

(f)

Fig. 15. (Color) Monthly (daily values averaged to the month) COV at the Moapa Valley NICE Net (NMOA) (marked Obs) and nearest
NDFD grid point for (a) ET0; (b) vapor pressure; (c) Tmax; (d) Tmin; (e) wind speed; and (f) solar radiation. NDFD forecasts shown are for a
1-day lead time.
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Data Availability Statement

The pyWeatherQAQC code used to QC observations can be found
at https://github.com/WSWUP/pyWeatherQAQC. Code use to
compute the ASCE Standardized Reference ET for observations
and data can be found at https://github.com/WSWUP/RefET.
Weather station data from NICE Net were provided by the Desert
Research Institute and can be found at https://nicenet.dri.edu/.
Forecast data from NDFD were provided by NOAA’s National
Center for Environmental Information and can be found at
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets
/national-digital-forecast-database-ndfd.
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